List of uniform polyhedra

Uniform polyhedra and tilings form a well studied group. They are listed here for quick comparison of their properties and varied naming schemes and symbols.

This list includes:

Not included are:

Contents

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

Convex forms (3 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Tetrahedron R 3|2 3
3.3.3
Tet Td W001 U01 K06 4 6 4 2 4{3}
Triangular prism P 2 3|2
3.4.4
Trip D3h -- -- -- 6 9 5 2 2{3}+3{4}
Truncated tetrahedron A 2 3|3
3.6.6
Tut Td W006 U02 K07 12 18 8 2 4{3}+4{6}
Truncated cube A 2 3|4
3.8.8
Tic Oh W008 U09 K14 24 36 14 2 8{3}+6{8}
Truncated dodecahedron A 2 3|5
3.10.10
Tid Ih W010 U26 K31 60 90 32 2 20{3}+12{10}
Cube R 3|2 4
4.4.4
Cube Oh W003 U06 K11 8 12 6 2 6{4}
Pentagonal prism P 2 5|2
4.4.5
Pip D5h -- U76 K01 10 15 7 2 5{4}+2{5}
Hexagonal prism P 2 6|2
4.4.6
Hip D6h -- -- -- 12 18 8 2 6{4}+2{6}
Octagonal prism P 2 8|2
4.4.8
Op D8h -- -- -- 16 24 10 2 8{4}+2{8}
Decagonal prism P 2 10|2
4.4.10
Dip D10h -- -- -- 20 30 12 2 10{4}+2{10}
Dodecagonal prism P 2 12|2
4.4.12
Twip D12h -- -- -- 24 36 14 2 12{4}+2{12}
Truncated octahedron A 2 4|3
4.6.6
Toe Oh W007 U08 K13 24 36 14 2 6{4}+8{6}
Great rhombicuboctahedron A 2 3 4|
4.6.8
Girco Oh W015 U11 K16 48 72 26 2 12{4}+8{6}+6{8}
Great rhombicosidodecahedron A 2 3 5|
4.6.10
Grid Ih W016 U28 K33 120 180 62 2 30{4}+20{6}+12{10}
Dodecahedron R 3|2 5
5.5.5
Doe Ih W005 U23 K28 20 30 12 2 12{5}
Truncated icosahedron A 2 5|3
5.6.6
Ti Ih W009 U25 K30 60 90 32 2 12{5}+20{6}

Convex forms (4 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Octahedron R 4|2 3
3.3.3.3
Oct Oh W002 U05 K10 6 12 8 2 8{3}
Square antiprism P |2 2 4
3.3.3.4
Squap D4d -- -- -- 8 16 10 2 8{3}+2{4}
Pentagonal antiprism P |2 2 5
3.3.3.5
Pap D5d -- U77 K02 10 20 12 2 10{3}+2{5}
Hexagonal antiprism P |2 2 6
3.3.3.6
Hap D6d -- -- -- 12 24 14 2 12{3}+2{6}
Octagonal antiprism P |2 2 8
3.3.3.8
Oap D8d -- -- -- 16 32 18 2 16{3}+2{8}
Decagonal antiprism P |2 2 10
3.3.3.10
Dap D10d -- -- -- 20 40 22 2 20{3}+2{10}
Dodecagonal antiprism P |2 2 12
3.3.3.12
Twap D12d -- -- -- 24 48 26 2 24{3}+2{12}
Cuboctahedron A 2|3 4
3.4.3.4
Co Oh W011 U07 K12 12 24 14 2 8{3}+6{4}
Small rhombicuboctahedron A 3 4|2
3.4.4.4
Sirco Oh W013 U10 K15 24 48 26 2 8{3}+(6+12){4}
Small rhombicosidodecahedron A 3 5|2
3.4.5.4
Srid Ih W014 U27 K32 60 120 62 2 20{3}+30{4}+12{5}
Icosidodecahedron A 2|3 5
3.5.3.5
Id Ih W012 U24 K29 30 60 32 2 20{3}+12{5}

Convex forms (5 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Icosahedron R 5|2 3
3.3.3.3.3
Ike Ih W004 U22 K27 12 30 20 2 20{3}
Snub cube A |2 3 4
3.3.3.3.4
Snic O W017 U12 K17 24 60 38 2 (8+24){3}+6{4}
Snub dodecahedron A |2 3 5
3.3.3.3.5
Snid I W018 U29 K34 60 150 92 2 (20+60){3}+12{5}

Nonconvex forms with convex faces

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Octahemioctahedron C+ 3/2 3|3
6.3/2.6.3
Oho Oh W068 U03 K08 12 24 12 0 8{3}+4{6}
Tetrahemihexahedron C+ 3/2 3|2
4.3/2.4.3
Thah Td W067 U04 K09 6 12 7 1 4{3}+3{4}
Cubohemioctahedron C+ 4/3 4|3
6.4/3.6.4
Cho Oh W078 U15 K20 12 24 10 -2 6{4}+4{6}
Great dodecahedron R+ 5/2|2 5
(5.5.5.5.5)/2
Gad Ih W021 U35 K40 12 30 12 -6 12{5}
Great icosahedron R+ 5/2|2 3
(3.3.3.3.3)/2
Gike Ih W041 U53 K58 12 30 20 2 20{3}
Great ditrigonal icosidodecahedron C+ 3/2|3 5
(5.3.5.3.5.3)/2
Gidtid Ih W087 U47 K52 20 60 32 -8 20{3}+12{5}
Small rhombihexahedron C+ 3/2 2 4|
4.8.4/3.8
Sroh Oh W086 U18 K23 24 48 18 -6 12{4}+6{8}
Small cubicuboctahedron C+ 3/2 4|4
8.3/2.8.4
Socco Oh W069 U13 K18 24 48 20 -4 8{3}+6{4}+6{8}
Nonconvex great rhombicuboctahedron C+ 3/2 4|2
4.3/2.4.4
Querco Oh W085 U17 K22 24 48 26 2 8{3}+(6+12){4}
Small dodecahemidodecahedron C+ 5/4 5|5
10.5/4.10.5
Sidhid Ih W091 U51 K56 30 60 18 -12 12{5}+6{10}
Great dodecahemicosahedron C+ 5/4 5|3
6.5/4.6.5
Gidhei Ih W102 U65 K70 30 60 22 -8 12{5}+10{6}
Small icosihemidodecahedron C+ 3/2 3|5
10.3/2.10.3
Seihid Ih W089 U49 K54 30 60 26 -4 20{3}+6{10}
Small dodecicosahedron C+ 3/2 3 5|
10.6.10/9.6/5
Siddy Ih W090 U50 K55 60 120 32 -28 20{6}+12{10}
Small rhombidodecahedron C+ 2 5/2 5|
10.4.10/9.4/3
Sird Ih W074 U39 K44 60 120 42 -18 30{4}+12{10}
Small dodecicosidodecahedron C+ 3/2 5|5
10.3/2.10.5
Saddid Ih W072 U33 K38 60 120 44 -16 20{3}+12{5}+12{10}
Rhombicosahedron C+ 2 5/2 3|
6.4.6/5.4/3
Ri Ih W096 U56 K61 60 120 50 -10 30{4}+20{6}
Great icosicosidodecahedron C+ 3/2 5|3
6.3/2.6.5
Giid Ih W088 U48 K53 60 120 52 -8 20{3}+12{5}+20{6}

Nonconvex prismatic forms

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Pentagrammic prism P+ 2 5/2|2
5/2.4.4
Stip D5h -- U78 K03 10 15 7 2 5{4}+2{5/2}
Heptagrammic prism (7/3) P+ 2 7/3|2
7/3.4.4
Giship D7h -- -- -- 14 21 9 2 7{4}+2{7/3}
Heptagrammic prism (7/2) P+ 2 7/2|2
7/2.4.4
Ship D7h -- -- -- 14 21 9 2 7{4}+2{7/2}
Pentagrammic antiprism P+ |2 2 5/2
5/2.3.3.3
Stap D5h -- U79 K04 10 20 12 2 10{3}+2{5/2}
Pentagrammic crossed-antiprism P+ |2 2 5/3
5/3.3.3.3
Starp D5d -- U80 K05 10 20 12 2 10{3}+2{5/2}

Other nonconvex forms with nonconvex faces

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Small stellated dodecahedron R+ 5|2 5/2
(5/2)5
Sissid Ih W020 U34 K39 12 30 12 -6 12{5/2}
Great stellated dodecahedron R+ 3|2 5/2
(5/2)3
Gissid Ih W022 U52 K57 20 30 12 2 12{5/2}
Ditrigonal dodecadodecahedron S+ 3|5/3 5
(5/3.5)3
Ditdid Ih W080 U41 K46 20 60 24 -16 12{5}+12{5/2}
Small ditrigonal icosidodecahedron S+ 3|5/2 3
(5/2.3)3
Sidtid Ih W070 U30 K35 20 60 32 -8 20{3}+12{5/2}
Stellated truncated hexahedron S+ 2 3|4/3
8/3.8/3.3
Quith Oh W092 U19 K24 24 36 14 2 8{3}+6{8/3}
Great rhombihexahedron S+ 4/33/2 2|
4.8/3.4/3.8/5
Groh Oh W103 U21 K26 24 48 18 -6 12{4}+6{8/3}
Great cubicuboctahedron S+ 3 4|4/3
8/3.3.8/3.4
Gocco Oh W077 U14 K19 24 48 20 -4 8{3}+6{4}+6{8/3}
Great dodecahemidodecahedron S+ 5/35/2|5/3
10/3.5/3.10/3.5/2
Gidhid Ih W107 U70 K75 30 60 18 -12 12{5/2}+6{10/3}
Small dodecahemicosahedron S+ 5/35/2|3
6.5/3.6.5/2
Sidhei Ih W100 U62 K67 30 60 22 -8 12{5/2}+10{6}
Dodecadodecahedron S+ 2|5/2 5
(5/2.5)2
Did Ih W073 U36 K41 30 60 24 -6 12{5}+12{5/2}
Great icosihemidodecahedron S+ 3/2 3|5/3
10/3.3/2.10/3.3
Geihid Ih W106 U71 K76 30 60 26 -4 20{3}+6{10/3}
Great icosidodecahedron S+ 2|5/2 3
(5/2.3)2
Gid Ih W094 U54 K59 30 60 32 2 20{3}+12{5/2}
Cubitruncated cuboctahedron S+ 4/3 3 4|
8/3.6.8
Cotco Oh W079 U16 K21 48 72 20 -4 8{6}+6{8}+6{8/3}
Great truncated cuboctahedron S+ 4/3 2 3|
8/3.4.6
Quitco Oh W093 U20 K25 48 72 26 2 12{4}+8{6}+6{8/3}
Truncated great dodecahedron S+ 2 5/2|5
10.10.5/2
Tigid Ih W075 U37 K42 60 90 24 -6 12{5/2}+12{10}
Small stellated truncated dodecahedron S+ 2 5|5/3
10/3.10/3.5
Quitsissid Ih W097 U58 K63 60 90 24 -6 12{5}+12{10/3}
Great stellated truncated dodecahedron S+ 2 3|5/3
10/3.10/3.3
Quitgissid Ih W104 U66 K71 60 90 32 2 20{3}+12{10/3}
Truncated great icosahedron S+ 2 5/2|3
6.6.5/2
Tiggy Ih W095 U55 K60 60 90 32 2 12{5/2}+20{6}
Great dodecicosahedron S+ 5/35/2 3|
6.10/3.6/5.10/7
Giddy Ih W101 U63 K68 60 120 32 -28 20{6}+12{10/3}
Great rhombidodecahedron S+ 3/25/3 2|
4.10/3.4/3.10/7
Gird Ih W109 U73 K78 60 120 42 -18 30{4}+12{10/3}
Icosidodecadodecahedron S+ 5/3 5|3
6.5/3.6.5
Ided Ih W083 U44 K49 60 120 44 -16 12{5}+12{5/2}+20{6}
Small ditrigonal dodecicosidodecahedron S+ 5/3 3|5
10.5/3.10.3
Sidditdid Ih W082 U43 K48 60 120 44 -16 20{3}+12{;5/2}+12{10}
Great ditrigonal dodecicosidodecahedron S+ 3 5|5/3
10/3.3.10/3.5
Gidditdid Ih W081 U42 K47 60 120 44 -16 20{3}+12{5}+12{10/3}
Great dodecicosidodecahedron S+ 5/2 3|5/3
10/3.5/2.10/3.3
Gaddid Ih W099 U61 K66 60 120 44 -16 20{3}+12{5/2}+12{10/3}
Small icosicosidodecahedron S+ 5/2 3|3
6.5/2.6.3
Siid Ih W071 U31 K36 60 120 52 -8 20{3}+12{5/2}+20{6}
Rhombidodecadodecahedron S+ 5/2 5|2
4.5/2.4.5
Raded Ih W076 U38 K43 60 120 54 -6 30{4}+12{5}+12{5/2}
Nonconvex great rhombicosidodecahedron S+ 5/3 3|2
4.5/3.4.3
Qrid Ih W105 U67 K72 60 120 62 2 20{3}+30{4}+12{5/2}
Snub dodecadodecahedron S+ |2 5/2 5
3.3.5/2.3.5
Siddid I W111 U40 K45 60 150 84 -6 60{3}+12{5}+12{5/2}
Inverted snub dodecadodecahedron S+ |5/3 2 5
3.5/3.3.3.5
Isdid I W114 U60 K65 60 150 84 -6 60{3}+12{5}+12{5/2}
Great snub icosidodecahedron S+ |2 5/2 3
3.4.5/2
Gosid I W116 U57 K62 60 150 92 2 (20+60){3}+12{5/2}
Great inverted snub icosidodecahedron S+ |5/3 2 3
3.3.5/3
Gisid I W113 U69 K74 60 150 92 2 (20+60){3}+12{5/2}
Great retrosnub icosidodecahedron S+ |3/25/3 2
(34.5/2)/2
Girsid I W117 U74 K79 60 150 92 2 (20+60){3}+12{5/2}
Great snub dodecicosidodecahedron S+ |5/35/2 3
33.5/3.3.5/2
Gisdid I W115 U64 K69 60 180 104 -16 (20+60){3}+(12+12){5/2}
Snub icosidodecadodecahedron S+ |5/3 3 5
3.3.5.5/3
Sided I W112 U46 K51 60 180 104 -16 (20+60){3}+12{5}+12{5/2}
Small snub icosicosidodecahedron S+ |5/2 3 3
35.5/2
Seside Ih W110 U32 K37 60 180 112 -8 (40+60){3}+12{5/2}
Small retrosnub icosicosidodecahedron S+ |3/23/25/2
(35.5/3)/2
Sirsid Ih W118 U72 K77 60 180 112 -8 (40+60){3}+12{5/2}
Great dirhombicosidodecahedron S+ |3/25/3 3

5/2


(4.5/3.4.3.
4.5/2.4.3/2)/2
Gidrid Ih W119 U75 K80 60 240 124 -56 40{3}+60{4}+24{5/2}
Icositruncated dodecadodecahedron S+ 5/3 3 5|
10/3.6.10
Idtid Ih W084 U45 K50 120 180 44 -16 20{6}+12{10}+12{10/3}
Truncated dodecadodecahedron S+ 5/3 2 5|
10/3.4.10
Quitdid Ih W098 U59 K64 120 180 54 -6 30{4}+12{10}+12{10/3}
Great truncated icosidodecahedron S+ 5/3 2 3|
10/3.4.6
Gaquatid Ih W108 U68 K73 120 180 62 2 30{4}+20{6}+12{10/3}

Special case

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Great disnub dirhombidodecahedron
Skilling's figure
S++ | (3/2) 5/3 (3) 5/2
(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2
Gidisdrid Ih -- -- -- 60 240 (*1) 204 24 120{3}+60{4}+24{5/2}

(*1) : The Great disnub dirhombidodecahedron has 120 edges shared by four faces. If counted as two pairs, then there are a total 360 edges. Because of this edge-degeneracy, it is not always considered a uniform polyhedron.

Column key

References

External links